"Oops, I did it again" – Security of One-Time Signatures under Two-Message Attacks

Leon Groot Bruinderink joint work with Andreas Hülsing

August 17, 2017

 Multiple (lattice, MQ, coding, isogeny)-based suggestions exist, however:

• Multiple (lattice, MQ, coding, isogeny)-based suggestions exist, however:

• Large signature and/or key sizes

• Multiple (lattice, MQ, coding, isogeny)-based suggestions exist, however:

• Large signature and/or key sizes

• Slow

• Multiple (lattice, MQ, coding, isogeny)-based suggestions exist, however:

• Large signature and/or key sizes

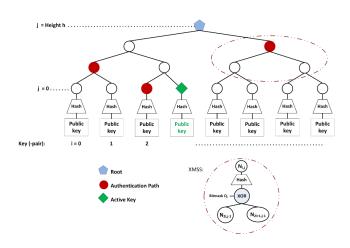
• Slow 🖴

Secure parameters / lack of cryptanalysis

Hash-based signatures

• Only requires a secure hash-function

Security well understood



• Fast 🙂

Hash-based one-time signatures

- First proposed already in 1979 by Leslie Lamport (LOTS)
- Later optimized by Winternitz (WOTS)
- Requires a secure hash function
- Security only provable when keys are used to sign once!

Merkle-based signatures

XMSS tree¹

¹http://www.pqsignatures.org/index/hbs.html/

Standardization

- Stateful proposals currently considered for standardization
- Stateful Merkle-tree based signatures:
 - XMSS²
 - LMS³(talk by Edward Eaton)
- Stateless scheme: SPHINCS
- All of these schemes have one-time signatures (OTS) as building block.

²https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/

³https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/

One-time signatures - in practice?

- Security only provable when keys are used to sign once!
- What can happen in practice?
 - Multi-threading
 - Backups
 - Virtualization
- What can we say about attack complexities?

How one-time are One-Time Signatures?

- What can we say about attack complexities?
- In this work:
 - We assume messages are hashed before signed (but not randomized)
 - We only look at two-message attacks
 - Chosen-message and random-message attack
 - Attack goals: full break; existential, selective and universal forgery

Analyzing two-message attacks

Notation

- Digest length m, security parameter n
- $F: \{0,1\}^n \to \{0,1\}^n$ one-way function
- ullet $H:\{0,1\}^*
 ightarrow \{0,1\}^m$ message hash function (modelled as RO)
- $G: \{0,1\}^m \to K \subset S$ message mapping function, where K is a subset of secret values S
- Signature σ containing secret values K

Formal security game

- Existential unforgeability under adaptively chosen-message attacks (EU-CMA)
- Game:
 - Attacker receives public key pk
 - Attacker can query H during the whole game
 - Attacker can query signing oracle twice
 - Attacker wins when outputting forgery on new message

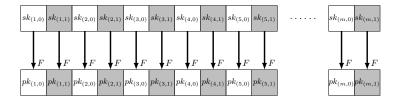
Security games - OTS case

- We do not consider attacks against the hash function
- Security game boils down to:
 - Attacker receives public key pk
 - Attacker queries H for optimal message digests
 - Sends two optimal messages to signing oracle
 - Attacker outputs forgery
- Attack complexity equals queries to H
- Strong attack: pre-computation independent of public key

Security games - OTS case

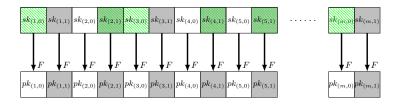
- Existential unforgeability under random-message attack (EU-RMA)
- Security game boils down to:
 - Attacker gets two random messages plus signatures
 - Query H to find a third message to forge
- Attack complexity equals queries to H

Security games - OTS case

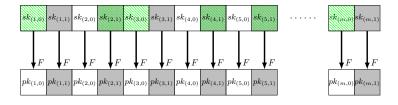

- Existential unforgeability under random-message attack (EU-RMA)
- Security game boils down to:
 - Attacker gets two random messages plus signatures
 - Query H to find a third message to forge
- Attack complexity equals queries to H
- Important note: with randomized hashing, EU-CMA equals EU-RMA

Lamport Signature Scheme

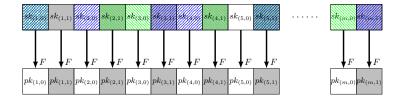
Lamport


• Key generation:

- Secret key: 2m random n-bit strings: $sk = (sk_{1.0}, sk_{1.1}, \dots, sk_{m.0}, sk_{m.1})$
- Public key: $pk = (pk_{1,0}, pk_{1,1}, \dots, pk_{m,0}, pk_{m,1}) = (F(sk_{1,0}), F(sk_{1,1}), \dots, F(sk_{m,0}), F(sk_{m,1}))$


Lamport

- Key generation:
 - Secret key: 2m random n-bit strings: $sk = (sk_{1.0}, sk_{1.1}, \dots, sk_{m.0}, sk_{m.1})$
 - Public key: $pk = (pk_{1,0}, pk_{1,1}, \dots, pk_{m,0}, pk_{m,1}) = (F(sk_{1,0}), F(sk_{1,1}), \dots, F(sk_{m,0}), F(sk_{m,1}))$
- Signature generation for $H(m_1) = (0, 1, 0, 1, 1, ..., 0)$:


Two-message attack analysis Lamport

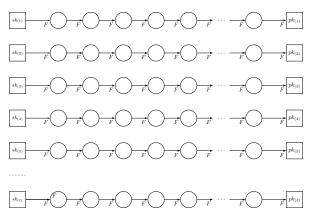
• First signature $(G(H(m_1)) = (0, 1, 0, 1, 1, \dots, 0))$

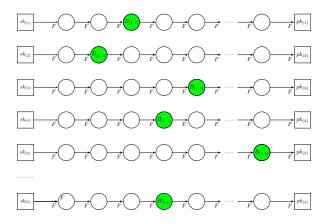
Two-message attack analysis Lamport

- First signature $(G(H(m_1)) = (0, 1, 0, 1, 1, \dots, 0))$
- Second signature $(G(H(m_2)) = (0, 0, 1, 0, 1, \dots, 1))$

Two-message attack analysis Lamport

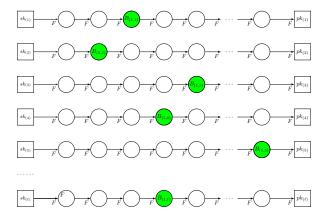
- Probability $H(m_3)$ being covered: $(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2}) = 3/4$ (single bit)
- Asymptotic complexities:
 - CMA (optimize all three messages) : $(4/3)^{m/3}$
 - RMA: $(4/3)^m$
- For n=m=256, CMA complexity of 2^{36} and RMA still 2^{106}

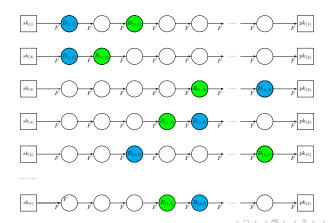

- WOTS parameter w
- Mapping function G that maps message to:
 - Message part: base-w representation of message (size $\ell_1 = \lceil \frac{m}{\log(w)} \rceil$)
 - Checksum part: (negated) base-w representation of hamming weight (size $\ell_2 = \lfloor \frac{\log(\ell_1(w-1))}{\log(w)} \rfloor + 1$)
- Signature and key size $\ell = \ell_1 + \ell_2$
- Uses w-1 iterations of hash-chains based on F: $F^{k}(x) = F(F^{k-1}(x)), F^{0}(x) = x$

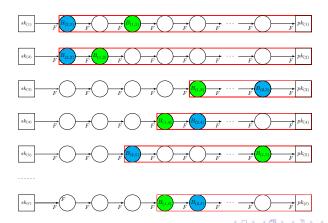

Message part

• Key generation:

- Secret key: ℓ random n-bit strings: $sk = (sk_1, sk_2, \dots, sk_\ell)$
- Public key: $pk = (pk_1, pk_2, ..., pk_\ell) = (F^{w-1}(sk_1), F^{w-1}(sk_2), ..., F^{w-1}(sk_\ell))$


• Signature generation $(G(H(m_1)) = (3, 2, 5, 4, w - 2, ..., 4))$


- Message part fixes checksum part
- What is the probability that both are covered?
- Difficult to analyze exactly. What happens "approximately"?
- ullet Simplified model: independent random variables U[0,w-1]


- Simplified model: independent random variables U[0, w-1]
- First signature $(G(H(m_1)) = (3, 2, 5, 4, w 2, ..., 4))$

- Simplified model: independent random variables U[0, w-1]
- First signature $(G(H(m_1)) = (3, 2, 5, 4, w 2, ..., 4))$
- Second signature $(G(H(m_2)) = (1, 1, w 2, 4, 3, \dots, 5))$

- Simplified model: independent random variables U[0, w-1]
- First signature $(G(H(m_1)) = (3, 2, 5, 4, w 2, ..., 4))$
- Second signature $(G(H(m_2)) = (1, 1, w 2, 4, 3, ..., 5))$

- Probability $H(m_3)$ being covered (single index): $\frac{(w+1)(4w-1)}{6w^2}$
- Asymptotic complexities:
 - CMA (optimize all three messages) : $\left(\frac{6w^2}{(w+1)(4w-1)}\right)^{\ell/3}$
 - RMA: $\left(\frac{6w^2}{(w+1)(4w-1)}\right)^{\ell}$
 - For n = m = 256 and w = 16, CMA complexity of 2^{11} and RMA only 2^{34}

- Probability $H(m_3)$ being covered (single index): $\frac{(w+1)(4w-1)}{6w^2}$
- Asymptotic complexities:
 - CMA (optimize all three messages) : $\left(\frac{6w^2}{(w+1)(4w-1)}\right)^{\ell/3}$
 - RMA: $\left(\frac{6w^2}{(w+1)(4w-1)}\right)^{\ell}$
 - For n = m = 256 and w = 16, CMA complexity of 2^{11} and RMA only 2^{34}
- "Not that innocent"

Experimental verification of WOTS model

- Verifying WOTS model by doing CMA
- ullet Take list of au messages, search for existential forgery
- From analysis: WOTS with m=n=256 and w=16 means $\tau\approx 2^{12}$ for Pr[Success]=1/2

Table 1: WOTS with w = 16 and digest length m = 256

$\overline{\tau}$	Pr[Succes]
2^{11}	0.1
2^{12}	0.49
2^{13}	0.94
2^{14}	1.0
2 ¹⁵	1.0

Conclusions

- Asymptotically, schemes still secure under two-message attacks
- However, typical parameters do not provide reasonable security level
- Future work: improve the analysis of WOTS
- More details in http://eprint.iacr.org/2016/1042
- We do not advocate signing twice with any OTS

Questions?