
Improving Side-channel Attacks on Lattice-based
Cryptography

Leon Groot Bruinderink
based on joint work with Peter Pessl and Yuval Yarom

June 2nd, 2017

Lattice-based cryptography June 2nd, 2017 1 / 20

Public-key Cryptography

Important part of secure internet

Encryption: keep information confidential

Digital signatures:

Authentication (prove authorship of message)
Integrity (prove data not changed)

For example, Bitcoin relies heavily on digital signatures

Lattice-based cryptography June 2nd, 2017 2 / 20

Lattice-based Cryptography

Quantum computers pose threat to current cryptography on the
internet (DH, RSA, ECC)

Lattice-based cryptography: promising post-quantum secure
alternative.

Active research on theoretical and practical security.

Security of implementations largely unexplored.

Lattice-based cryptography June 2nd, 2017 3 / 20

Side-channel attacks

Use physical information leakage from implementations

Timing attacks can be done remotely

Use that to perform a key-recovery

Lattice-based cryptography June 2nd, 2017 4 / 20

This talk

Show side-channel attack on lattice-based signature scheme BLISS

Model side-channel simply as additional knowledge to attacker

Show the used key-recovery techniques

Lattice-based cryptography June 2nd, 2017 5 / 20

BLISS

Lattice-based cryptography June 2nd, 2017 6 / 20

BLISS Lattice-based Signature Scheme

Bimodal Lattice Signature Scheme (BLISS)

Implementations available via NTRU lattices (polynomials in
Rq = Zq[x]/(xn + 1), n = 2r , prime q).

For f , g ∈ Rq = Zq[x]/(xn + 1):

f · g = fG = gF

where F,G ∈ Zn×n
q , whose columns are rotations of f, g, with possibly

opposite sign:

F =


f0 −fn−1 ... −f1
f1 f0 ... −f2
...
fn−1 fn−2 ... f0



Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Secret key S = (f , 2g + 1) ∈ R2
q with f , g sparse and typically entries

in {±1, 0}
Public key A = (a1, a2) ∈ R2

q satisfying:

a1s1 + a2s2 ≡ q mod 2q

Computed as aq = (2g + 1)/f mod q (restart if f not invertible) and
A = (2aq, q − 2).

Attacker can validate correctness for candidate of key f with the
public key and compute 2g + 1.

Both −S and S are valid as secret key.

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

3 Construct challenge c = H(u, µ) ∈ {0, 1}n with ||c||1 = κ

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

3 Construct challenge c = H(u, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z = y + (−1)bs1 · c

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

3 Construct challenge c = H(u, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z = y + (−1)bs1 · c
5 Return signature (z, c) for µ.

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

3 Construct challenge c = H(u, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z = y + (−1)bs1 · c
5 Return signature (z, c) for µ.

s1 · c = s1C over Z for matrix C ∈ {−1, 0, 1}n×n.

Lattice-based cryptography June 2nd, 2017 7 / 20

BLISS Lattice-based Signature Scheme

Simplified version of the BLISS signature algorithm for message µ:

1 Sample y← DZn,σ.

2 Construct vector u, using y and public key A.

3 Construct challenge c = H(u, µ) ∈ {0, 1}n with ||c||1 = κ

4 Generate a random bit b. Set z = y + (−1)bs1 · c
5 Return signature (z, c) for µ.

s1 · c = s1C over Z for matrix C ∈ {−1, 0, 1}n×n.

Equation in signature over Z:

z = y + (−1)bs1C

where the unknowns for the attacker are y, b, s1

Lattice-based cryptography June 2nd, 2017 7 / 20

Discrete Gaussian Distribution

-40 -20 20 40
x

0.01

0.02

0.03

0.04

Dσ (x)

: σ = 10
: σ = 20
: σ = 30

Figure 1: Discrete Gaussian distribution

Step 1 in signature algorithm: y← DZm,σ

This is required to achieve (provable) security and small signature size.

Not straightforward to do in practice: high precision required.

But how do we use additional knowledge of y to find s?

Lattice-based cryptography June 2nd, 2017 8 / 20

Attack Scenario’s

Lattice-based cryptography June 2nd, 2017 9 / 20

Attack Scenario 1

Signature equation: z = y + (−1)bsC

Scenario 1:
We can determine y completely from a side-channel attack

Lattice-based cryptography June 2nd, 2017 10 / 20

Attack Scenario 1

Signature equation: z = y + (−1)bsC

Scenario 1:
We can determine y completely from a side-channel attack

Only need one signature.

Solve equation (−1)b(z− y) = sC for s.

But unlikely...(?)

Lattice-based cryptography June 2nd, 2017 10 / 20

Attack Scenario 2

System of n equations over Z:
z0
z1
...

zn−1


︸ ︷︷ ︸
Signature

=


y0
y1
...

yn−1


︸ ︷︷ ︸

Noise

+ (−1)b︸ ︷︷ ︸
Sign


− c0 −
− c1 −
− ... −
− cn−1 −


︸ ︷︷ ︸

Challenge

·


s0
s1
...

sn−1


︸ ︷︷ ︸

Secret

Scenario 2:
For some coefficients an attacker can determine yi .

Lattice-based cryptography June 2nd, 2017 11 / 20

Attack Scenario 2

System of n equations over Z:
z0
z1
...

zn−1


︸ ︷︷ ︸
Signature

=


y0
y1
...

yn−1


︸ ︷︷ ︸

Noise

+ (−1)b︸ ︷︷ ︸
Sign


− c0 −
− c1 −
− ... −
− cn−1 −


︸ ︷︷ ︸

Challenge

·


s0
s1
...

sn−1


︸ ︷︷ ︸

Secret

Scenario 2:
For some coefficients an attacker can determine yi .

Zoom in on coordinate-wise equalities:

zi = yi + (−1)b〈ci , s〉

If we know yi , we save ζk = ci in a list with yi and zi .

Lattice-based cryptography June 2nd, 2017 11 / 20

Attack Scenario 2

We can acquire enough of these vectors from multiple signatures and
form: 

(−1)b0(z0 − y0)
(−1)b1(z1 − y1)

...
(−1)bn−1(zn−1 − yn−1)

 =


− ζ0 −
− ζ1 −
− ... −
− ζn−1 −

 ·


s0
s1
...
sn−1


Unfortunately: all bits bi are unknown.

Lattice-based cryptography June 2nd, 2017 11 / 20

Attack Scenario 2

We can acquire enough of these vectors from multiple signatures and
form: 

(−1)b0(z0 − y0)
(−1)b1(z1 − y1)

...
(−1)bn−1(zn−1 − yn−1)

 =


− ζ0 −
− ζ1 −
− ... −
− ζn−1 −

 ·


s0
s1
...
sn−1


Unfortunately: all bits bi are unknown.

Trick: if we know yi , we can be selective and ensure that zi = yi ,
before saving ζk = ci in our list.

We can eliminate b:

(−1)b(zi − yi) = 0 = 〈ζk , s〉

Lattice-based cryptography June 2nd, 2017 11 / 20

Attack Scenario 2

If we know yi and zi = yi : we save ζk = ci .

Acquire enough of these vectors from multiple signatures and we have
equation:

sL = 0

With very high probability: secret vector s is the only vector in the
integer (left) kernel of L.

Lattice-based cryptography June 2nd, 2017 11 / 20

Attack Scenario 3

Signature equation over Z: z = y + (−1)bCs.

Let us go one step further:

Scenario 3:
For some coefficients an attacker knows yi ∈ {γ, γ + 1}

and with high probability, yi = γ

Lattice-based cryptography June 2nd, 2017 12 / 20

Attack Scenario 3

Apply same method as previous:

If we know yi ∈ {γ, γ + 1} and zi = γ: we save ζk = ci .

Now sL is not an all-zero vector, but it is small.

Use LLL-algorithm to compute small vectors, search for s in the
unitary transformation matrix.

Verify correctness with public key.

Lattice-based cryptography June 2nd, 2017 12 / 20

Results of Attacking BLISS

0 1 2 3 4 5
(n + i) equations

0.5

0.6

0.7

0.8

0.9

1

Psucc

BLISS-0
BLISS-1
BLISS-2
BLISS-3
BLISS-4

Figure 2: Success probability of LLL

Previous attack scenario 2 and 3 were achievable in real-life

Lattice-based cryptography June 2nd, 2017 13 / 20

Improving Side-channel Attacks on BLISS

Lattice-based cryptography June 2nd, 2017 14 / 20

BLISS-B: accelerating signatures

A new variant BLISS-B proposed, accelerating signing time by 2.8.

Recall signature (z, c) with:

z = y + (−1)bs1 · c

where the unknowns for the attacker are y, b, s1

Lattice-based cryptography June 2nd, 2017 15 / 20

BLISS-B: accelerating signatures

A new variant BLISS-B proposed, accelerating signing time by 2.8.

Recall signature (z, c) with:

z = y + (−1)bs1 · c

where the unknowns for the attacker are y, b, s1

In BLISS-B, this is transformed to signature (z, c) with:

z = y + (−1)bs1 · c?

where c ≡ c? mod 2.

Unknowns to attacker now are y, b, s1 and the signs of c?.

Lattice-based cryptography June 2nd, 2017 15 / 20

BLISS-B: accelerating signatures

A new variant BLISS-B proposed, accelerating signing time by 2.8.

Recall signature (z, c) with:

z = y + (−1)bs1 · c

where the unknowns for the attacker are y, b, s1

In BLISS-B, this is transformed to signature (z, c) with:

z = y + (−1)bs1 · c?

where c ≡ c? mod 2.

Unknowns to attacker now are y, b, s1 and the signs of c?.

The attacker cannot build the matrix/lattice basis in previous attacks!

Lattice-based cryptography June 2nd, 2017 15 / 20

A new key-recovery attack on BLISS-B: step 1

Assume (possibly erroneous) information on yi

Coordinate-wise equalities in signature:

zi = yi + (−1)b〈c?i , s〉

where attacker knows ci ≡ c?i mod 2 and zi

Lattice-based cryptography June 2nd, 2017 16 / 20

A new key-recovery attack on BLISS-B: step 1

Assume (possibly erroneous) information on yi

Coordinate-wise equalities in signature:

zi = yi + (−1)b〈c?i , s〉

where attacker knows ci ≡ c?i mod 2 and zi

Step 1: perform previous attack over GF (2)!

No need of requiring zi = yi (with high probability)

Instead of LLL, use a LPN-solver

This part gives the secret s̃ ≡ s mod 2

Lattice-based cryptography June 2nd, 2017 16 / 20

A new key-recovery attack on BLISS-B: step 2

Assume (possibly erroneous) information on yi

Coordinate-wise equalities in signature:

zi = yi + (−1)b〈c?i , s〉

where attacker knows ci ≡ c?i mod 2 and zi

Attacker also knows s̃ ≡ s mod 2 from step 1

But keys can have si = ±2, which are not detected by step 1.

Lattice-based cryptography June 2nd, 2017 17 / 20

A new key-recovery attack on BLISS-B: step 2

Assume (possibly erroneous) information on yi

Coordinate-wise equalities in signature:

zi = yi + (−1)b〈c?i , s〉

where attacker knows ci ≡ c?i mod 2 and zi

Attacker also knows s̃ ≡ s mod 2 from step 1

But keys can have si = ±2, which are not detected by step 1.

Suppose
|zi − yi | = |〈c?i , s〉| > |〈ci , s̃〉|

Lattice-based cryptography June 2nd, 2017 17 / 20

A new key-recovery attack on BLISS-B: step 2

Assume (possibly erroneous) information on yi

Coordinate-wise equalities in signature:

zi = yi + (−1)b〈c?i , s〉

where attacker knows ci ≡ c?i mod 2 and zi

Attacker also knows s̃ ≡ s mod 2 from step 1

But keys can have si = ±2, which are not detected by step 1.

Suppose
|zi − yi | = |〈c?i , s〉| > |〈ci , s̃〉|

There has to be at least one factor ±2 making up for difference!

Save ci in a list

Lattice-based cryptography June 2nd, 2017 17 / 20

A new key-recovery attack on BLISS-B: step 2

Suppose
|zi − yi | = |〈c?i , s〉| > |〈ci , s̃〉|

Save ci in a list

Acquire many of these events...

Two ways of extracting all coordinates of s that are ±2:

Integer Programming solver
Statistical approach

This part of the attack gives all magnitudes of the secret: |s|

Lattice-based cryptography June 2nd, 2017 17 / 20

A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |s1|
For the final step, we use the public key A = (2aq, q − 2) and |s1|.

Lattice-based cryptography June 2nd, 2017 18 / 20

A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |s1|
For the final step, we use the public key A = (2aq, q − 2) and |s1|.
Recall the key-relation over Rq = Zq[x]/(xn + 1)

aq = s2/s1 = (2g + 1)/f mod q

Can model this relation as A1s1 = s2 for matrix A1 (q-ary lattice)

Lattice-based cryptography June 2nd, 2017 18 / 20

A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |s1|
For the final step, we use the public key A = (2aq, q − 2) and |s1|.
Recall the key-relation over Rq = Zq[x]/(xn + 1)

aq = s2/s1 = (2g + 1)/f mod q

Can model this relation as A1s1 = s2 for matrix A1 (q-ary lattice)

Final step a: remove all columns j of A1 where |s1|j = 0

Lattice-based cryptography June 2nd, 2017 18 / 20

A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |s1|
For the final step, we use the public key A = (2aq, q − 2) and |s1|.
Recall the key-relation over Rq = Zq[x]/(xn + 1)

aq = s2/s1 = (2g + 1)/f mod q

Can model this relation as A1s1 = s2 for matrix A1 (q-ary lattice)

Final step a: remove all columns j of A1 where |s1|j = 0

Final step b: remove some rows of A1 and try to solve A∗
1s

∗
1 = s∗2

using BKZ. This gives s∗1 which completely recovers s1

Lattice-based cryptography June 2nd, 2017 18 / 20

A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |s1|
For the final step, we use the public key A = (2aq, q − 2) and |s1|.
Recall the key-relation over Rq = Zq[x]/(xn + 1)

aq = s2/s1 = (2g + 1)/f mod q

Can model this relation as A1s1 = s2 for matrix A1 (q-ary lattice)

Final step a: remove all columns j of A1 where |s1|j = 0

Final step b: remove some rows of A1 and try to solve A∗
1s

∗
1 = s∗2

using BKZ. This gives s∗1 which completely recovers s1

Final step c: compute s2 by aq · s1

Lattice-based cryptography June 2nd, 2017 18 / 20

Results of the full attack on BLISS-B

BLISS-B implemented in strongSwan (library for secure VPN)

Performed full real-life attack using previous steps on strongSwan

0 100 200 300 400 500

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0
BLISS-BIII

(a) Linear Programming

0 50 100 150

10 3

0

0.2

0.4

0.6

0.8

1

BLISS-B0
BLISS-BIII
BLISS-BIV

(b) Statistical

Figure 3: Success rate for recovery of ±2 coefficients

Lattice-based cryptography June 2nd, 2017 19 / 20

Questions?

Lattice-based cryptography June 2nd, 2017 20 / 20

