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Public-key Cryptography

Important part of secure internet

Encryption: keep information confidential

Digital signatures:

o Authentication (prove authorship of message)
o Integrity (prove data not changed)

For example, Bitcoin relies heavily on digital signatures
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Lattice-based Cryptography

e Quantum computers pose threat to current cryptography on the
internet (DH, RSA, ECC)

o Lattice-based cryptography: promising post-quantum secure

alternative.
@ Active research on theoretical and practical security.
@ Security of implementations largely unexplored.
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Side-channel attacks

@ Use physical information leakage from implementations
@ Timing attacks can be done remotely

@ Use that to perform a key-recovery
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This talk

@ Show side-channel attack on lattice-based signature scheme BLISS
@ Model side-channel simply as additional knowledge to attacker

@ Show the used key-recovery techniques
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BLISS
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BLISS Lattice-based Signature Scheme

e Bimodal Lattice Signature Scheme (BLISS)

@ Implementations available via NTRU lattices (polynomials in
Rq = Zg4[x]/(x" + 1), n = 2", prime q).

o For f,g € Ry = Zqg[x]/(x" + 1):

f-g=fG=gF

where F', G € Zg*", whose columns are rotations of f, g, with possibly
opposite sign:

fo  —f-1 ... —h
S R
fnfl fn72 ﬁ)
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BLISS Lattice-based Signature Scheme

@ Secret key S = (f,2g+1) € Rg with f, g sparse and typically entries
in {£1,0}
Public key A = (a1, a2) € RCZI satisfying:

a1s1 + axsp = g mod 2q

Computed as ag = (2g + 1)/f mod q (restart if f not invertible) and
A = (2a4,9 - 2).

@ Attacker can validate correctness for candidate of key f with the
public key and compute 2g + 1.

@ Both —S and S are valid as secret key.
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .
@ Construct vector u, using y and public key A.
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .
@ Construct vector u, using y and public key A.
© Construct challenge ¢ = H(u, 1) € {0,1}" with ||c|]1 = &
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .

@ Construct vector u, using y and public key A.

© Construct challenge ¢ = H(u, 1) € {0,1}" with ||c|]1 = &
Q Generate a random bit b. Set z =y + (—1)%s; - c
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .
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Q Generate a random bit b. Set z =y + (—1)%s; - c
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BLISS Lattice-based Signature Scheme

@ Simplified version of the BLISS signature algorithm for message p:

© Sampley < Dzn .

@ Construct vector u, using y and public key A.

© Construct challenge ¢ = H(u, 1) € {0,1}" with ||c|]1 = &
Q Generate a random bit b. Set z =y + (—1)%s; - c

© Return signature (z,c) for p.

@ s; - ¢ =s;C over Z for matrix C € {—1,0,1}"*".

@ Equation in signature over Z:
z=y+(-1)bs,C

where the unknowns for the attacker are y, b, s1
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Discrete Gaussian Distribution

D, ()
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.
o

Figure 1: Discrete Gaussian distribution

Step 1 in signature algorithm: y <— Dzm ,

This is required to achieve (provable) security and small signature size.
Not straightforward to do in practice: high precision required.

But how do we use additional knowledge of y to find s?
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Attack Scenario’s

Lattice-based cryptography June 2nd, 2017 9 /20



Attack Scenario 1

e Signature equation: z =y + (—1)?sC

Scenario 1:
We can determine y completely from a side-channel attack
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Attack Scenario 1

e Signature equation: z =y + (—1)?sC

Scenario 1:
We can determine y completely from a side-channel attack

@ Only need one signature.

e Solve equation (—1)?(z — y) = sC for s.
e But unlikely...(?)
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Attack Scenario 2

@ System of n equations over Z:

20 Yo - € - S0
21 )41 b ¢ - 51
- +(-1) :
Zp—1 Yn—1 Sien |- cp1 — Sn—1
——
Signature Noise Challenge Secret
Scenario 2:

For some coefficients an attacker can determine y;.

Lattice-based cryptography June 2nd, 2017 11 /20



Attack Scenario 2

@ System of n equations over Z:

20 Yo - ©C - S0
Z1 )41 b|— € — s1
= +(-1)? | RE
Zpn—1 Yn—1 Sign — Cp—1 — Sp—1
—— N—— N—— e N——
Signature Noise Challenge Secret
Scenario 2:

For some coefficients an attacker can determine y;.

@ Zoom in on coordinate-wise equalities:
zi =y + (=1)"(c;,s)

o If we know y;, we save (, = c; in a list with y; and z;.
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Attack Scenario 2

@ We can acquire enough of these vectors from multiple signatures and

form:
(=1)(z0 = y0) - G - 0
(=1)"(z1 — »1) - @ ]| =
(11 —vo ) | L= Gr —] | s

@ Unfortunately: all bits b; are unknown.
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Attack Scenario 2

@ We can acquire enough of these vectors from multiple signatures and

form:
(—1)™(z0 — yo) - G - S
(=1)"(z — »1) _|= G .| =
(<11 —vo1) | = C1 =) | s

@ Unfortunately: all bits b; are unknown.

@ Trick: if we know y;, we can be selective and ensure that z; = y;,
before saving (x = c; in our list.

@ We can eliminate b:

(—1)%(z — yi) = 0= ((k. 5)
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Attack Scenario 2

o If we know y; and z; = y;: we save (x = c;.
@ Acquire enough of these vectors from multiple signatures and we have
equation:
sL=0
o With very high probability: secret vector s is the only vector in the
integer (left) kernel of L.
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Attack Scenario 3

e Signature equation over Z: z =y + (—1)?Cs.

@ Let us go one step further:

Scenario 3:
For some coefficients an attacker knows y; € {~,v + 1}
and with high probability, y; = v

Lattice-based cryptography June 2nd, 2017 12 /20



Attack Scenario 3

@ Apply same method as previous:

o If we know y; € {v,7+ 1} and z; = ~: we save (x = c;.

@ Now sL is not an all-zero vector, but it is small.

@ Use LLL-algorithm to compute small vectors, search for s in the
unitary transformation matrix.

o Verify correctness with public key.
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Results of Attacking BLISS
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Figure 2: Success probability of LLL

@ Previous attack scenario 2 and 3 were achievable in real-life
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Improving Side-channel Attacks on BLISS
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BLISS-B: accelerating signatures

@ A new variant BLISS-B proposed, accelerating signing time by 2.8.

@ Recall signature (z, c) with:
z=y+(-1)’s;-c

where the unknowns for the attacker are y, b, s1
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BLISS-B: accelerating signatures

@ A new variant BLISS-B proposed, accelerating signing time by 2.8.
@ Recall signature (z, c) with:

z=y+(-1)’s;-c

where the unknowns for the attacker are y, b, s1
@ In BLISS-B, this is transformed to signature (z, c) with:

z=y+(-1)bs; - c*

where ¢ = ¢* mod 2.

@ Unknowns to attacker now are y, b,s; and the signs of c*.
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BLISS-B: accelerating signatures

A new variant BLISS-B proposed, accelerating signing time by 2.8.

Recall signature (z,c) with:

z=y+(-1)’s;-c

where the unknowns for the attacker are y, b, s1
In BLISS-B, this is transformed to signature (z, c) with:

z=y+(-1)bs; - c*

where ¢ = ¢* mod 2.

Unknowns to attacker now are y, b, s; and the signs of c*.

The attacker cannot build the matrix/lattice basis in previous attacks!
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A new key-recovery attack on BLISS-B: step 1

@ Assume (possibly erroneous) information on y;

o Coordinate-wise equalities in signature:
zi = yi+ (-1)*(c},s)

where attacker knows ¢; = ¢f mod 2 and z;
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A new key-recovery attack on BLISS-B: step 1

Assume (possibly erroneous) information on y;

Coordinate-wise equalities in signature:
zi = yi+ (-1)*(c},s)

where attacker knows ¢; = ¢f mod 2 and z;

Step 1: perform previous attack over GF(2)!

No need of requiring z; = y; (with high probability)
Instead of LLL, use a LPN-solver

This part gives the secret § = s mod 2
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A new key-recovery attack on BLISS-B: step 2

@ Assume (possibly erroneous) information on y;

o Coordinate-wise equalities in signature:
zi = yi+ (-1)*(c},s)

where attacker knows ¢; = ¢f mod 2 and z;
@ Attacker also knows § = s mod 2 from step 1
@ But keys can have s; = 42, which are not detected by step 1.
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A new key-recovery attack on BLISS-B: step 2

Assume (possibly erroneous) information on y;

Coordinate-wise equalities in signature:
zi = yi+ (-1)*(c},s)

where attacker knows ¢; = ¢f mod 2 and z;

@ Attacker also knows § = s mod 2 from step 1
@ But keys can have s; = 42, which are not detected by step 1.
@ Suppose

|zi = il = [{ei,8) > [, §)
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A new key-recovery attack on BLISS-B: step 2

Assume (possibly erroneous) information on y;

Coordinate-wise equalities in signature:
zi = yi+ (-1)*(c},s)

where attacker knows ¢; = ¢f mod 2 and z;

@ Attacker also knows § = s mod 2 from step 1
@ But keys can have s; = 42, which are not detected by step 1.
@ Suppose

|zi — yil = (7, s)| > [{ci,§)]|
@ There has to be at least one factor +2 making up for difference!

@ Save ¢; in a list
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A new key-recovery attack on BLISS-B: step 2

@ Suppose

|zi — yil = {cf, 8)[ > [{ci, §)]
@ Save ¢; in a list
@ Acquire many of these events...

@ Two ways of extracting all coordinates of s that are £2:

o Integer Programming solver
e Statistical approach

@ This part of the attack gives all magnitudes of the secret: |s]
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A new key-recovery attack on BLISS-B: final step

@ So far, the attacker knows all magnitudes of the secret: |s| = |sq]

o For the final step, we use the public key A = (2a,,q — 2) and |s1].
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@ So far, the attacker knows all magnitudes of the secret: |s| = |sq]
o For the final step, we use the public key A = (2a,,q — 2) and |s1].
o Recall the key-relation over Ry = Zg[x]/(x" + 1)
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A new key-recovery attack on BLISS-B: final step

So far, the attacker knows all magnitudes of the secret: |s| = |sq]

For the final step, we use the public key A = (2a4,q —2) and [sq].
Recall the key-relation over Ry = Zg[x]/(x" + 1)

ag = s2/s1 = (2g +1)/f mod g

Can model this relation as Ajs; = s for matrix A (g-ary lattice)

Final step a: remove all columns j of A; where |s;|; =0

Final step b: remove some rows of A; and try to solve Ajs] =s3
using BKZ. This gives s which completely recovers s;
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A new key-recovery attack on BLISS-B: final step

@ So far, the attacker knows all magnitudes of the secret: |s| = |sq]
o For the final step, we use the public key A = (2a,,q — 2) and |s1].
o Recall the key-relation over Ry = Zg[x]/(x" + 1)

ag = s2/s1 = (2g +1)/f mod g

@ Can model this relation as Ajs; = sp for matrix Ay (g-ary lattice)
e Final step a: remove all columns j of A; where |s;|; =0

o Final step b: remove some rows of A and try to solve Ajs] = s}
using BKZ. This gives s which completely recovers s;

@ Final step c: compute s by a4 - 51
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Results of the full attack on BLISS-B

@ BLISS-B implemented in strongSwan (library for secure VPN)

o Performed full real-life attack using previous steps on strongSwan
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Figure 3: Success rate for recovery of £2 coefficients
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Questions?
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